Abnormal Basic Coagulation Testing

Laboratory Testing Algorithms

Jeffrey S. Jhang, M.D.

Global Coagulation Testing

- No single global laboratory test
- Bleeding history is the strongest predictor of bleeding risk for any procedure
- Testing performed for:
 - Screening
 - Monitoring anticoagulant therapy
 - Guide for component therapy
 - Examination of components of coagulation
 - “for the record”, “medicolegal”, “routine”
- These assays examine components of coagulation
 - Prothrombin Time (PT): Extrinsic and Common Pathway
 - Activated Partial Thromboplastin Time (aPTT): Intrinsic and Common Pathway
 - Fibrinogen
- Problems
 - Not predictive
 - Not completely standardized
 - Artifacts
 - Misleading
 - False sense of security
 - Pursuit of clinically irrelevant abnormal tests

Coagulation Cascade

A Little Simpler

Lee-White Clotting Time

- 1912 - Roger Lee & Paul Duncan White
 - formulated and developed the ‘Lee-White’ clotting time.
- Historically used to monitor heparin
- Poorly standardized
 - Activator
 - Calcium
 - Phospholipid

Prothrombin Time

- Platelet Poor Plasma
- Citrated 9:1; 3.2%
- Thromboplastin
 - Phospholipid
 - Source of tissue factor (e.g. rabbit brain)
 - Ca++
- Time to clot detection (seconds)
- Sensitive to factor VII, but also V and X
- Standardization
 - INR & ISI (Prior Lecture)
aPTT
- Platelet Poor Plasma
- Citrated 9:1 3.2%
- Activator (e.g. silica, kaolin)
- Partial Thromboplastin
 - No source of tissue factor
 - Phospholipid
 - Ca\(^{+2}\)
- Time to Clot Detection (seconds)
- Need to determine therapeutic range for heparin (Prior Lecture)
- aPTT can be shortened due to elevated FVIII as an acute phase reactant

Fibrinogen
- Plasma diluted
- High concentration of thrombin (IIa)
- Calibrators plotted against log(TT)
- Will not differentiate hypofibrinogenemia from dysfibrinogenemia

Hemorrhagic Diseases with Normal PT and/or aPTT
- Mild von Willebrand Disease
- Mild Hemophilia
- Platelet Dysfunction
- α2-antiplasmin deficiency
- Dysfibrinogenemia
- Monoclonal Gammopathy
- Factor XIII deficiency
- Vascular or connective tissue abnormalities

Abnormal Coagulation Tests with No Bleeding
- Factor XII Deficiency
- Prekallikrein Deficiency
- High molecular weight kininogen deficiency
- Mild VII deficiency (e.g. heterozygotes)
- Lupus Anticoagulants

Preanalytical Variable and Spurious Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulant</td>
<td>3.2% vs. 3.8% Citrate</td>
</tr>
<tr>
<td>Under or over fill</td>
<td>Whole Blood to Anticoagulant Ratio (9:1) altered</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>Plasma to Anticoagulant Ratio (9:1) altered</td>
</tr>
<tr>
<td></td>
<td>Low Hct: too little anticoagulant</td>
</tr>
<tr>
<td></td>
<td>High Hct: too much anticoagulant</td>
</tr>
<tr>
<td>Order of fill</td>
<td>EDTA should be tube drawn after coag EDTA can lead to over-binding of calcium</td>
</tr>
<tr>
<td>Transport</td>
<td>PF4 release over time neutralizes heparin</td>
</tr>
<tr>
<td></td>
<td>Labile factors decrease with time at room temperature</td>
</tr>
<tr>
<td>Phlebotomy</td>
<td>Waste Tube Prior to Drawing Coag Studies</td>
</tr>
<tr>
<td></td>
<td>Thromboplastin release with phospholany</td>
</tr>
<tr>
<td>Clot</td>
<td>Loss of factors to form clot (lengthen time)</td>
</tr>
<tr>
<td></td>
<td>Clot can interfere with clot detection (shorten time)</td>
</tr>
</tbody>
</table>
Causes of abnormal PT only

- Factor Deficiency
 - Factor VII
 - Common Pathway (II, V, X)
- Warfarin Ingestion
- Liver Dysfunction
- Vitamin K Deficiency
- Disseminated Intravascular Coagulation
- Lupus Anticoagulant

Congenital Factor VII Deficiency

- AR disorder 1 in 500,000
- 50% no function, 50% no antigen
- Presentation varies widely depending on level of expression
- <10% factor activity increases likelihood of bleeding
- Bruising, epistaxis, soft tissue hemorrhage, menorrhagia, post-partum bleeding
- <1% have severe bleeding
- CNS hemorrhage during delivery, hemorrhages
- Association with aplastic anemia, homocystinuria, Dubin-Johnson, Rotor Syndrome, Gilbert Syndrome
- Treat → Novoseven (20-30 μg/kg), Prothrombin Concentrates, Plasma

Causes of Elevated aPTT only

- Heparin, DTI
- Factor Deficiencies
 - HMWK and PK
 - Factors XII, XI, IX, VIII
 - Common Pathway (X, V, II, I)
 - Usually found with elevation of aPTT
- Lupus Anticoagulant
- Specific Inhibitors (e.g. Factor VIII inhibitors)
- Possible warfarin, liver dysfunction, DIC
Thrombin Time

- Hypofibrinogenemia
- Dysfibrinogenemia
- Heparin (very sensitive!!!)
- Fibrin Degradation Products
- High [Immunoglobulins]
- Anti-bovine thrombin antibodies if bovine thrombin used

Reptilase Time

- Bothrops atrox
- Hypo/Dysfibrinogenemia (Another lecture!)
 - Congenital
 - Can’t convert fibrinogen to fibrin
 - Abnormal fibrinopeptide release
 - Fibrin polymerization defect
 - Abnormal stabilization
 - Resistance to fibrin lysis
 - Afibrinogenemia
 - Mutation in any of the three chains
 - Presentation varies from no complications to hemorrhagic and thrombotic complications

Mixing Study

- Hemophilia A and B and C (another lecture!)
 - Hemophilia A
 - 1/5,000 live male births
 - XLR Factor VIII Deficiency (Mild, Moderate or Severe)
 - Classically intraarticular, soft tissue and CNS bleeding (2-8%)
 - 80-85% of hemophilia cases
 - Replace with Recombinant Factor VIII
 - Hemophilia B
 - 1/30,000 live male births
 - XLR Factor IX Deficiency
 - Replace with Recombinant Factor IX
 - Factor XI (Hemophilia C)
 - AR; mild or no bleeding tendency
 - Levels do not correlate with bleeding
 - Spontaneous bleeding is not a feature

Other Factor Deficiencies with no bleeding

- Prekallikrein
 - AR
 - May be associated with thromboembolism
- HMWK
 - AR
 - No bleeding abnormalities
- Factor XII (Hageman Factor)
 - AR and at times AD
 - Homozygotes have no activity
 - Heterozygotes 20-60%
 - Do not experience bleeding
 - Reported associations with spontaneous abortion, premature delivery, arterial and venous thrombosis, MI, PE
Lupus Anticoagulants (Another lecture!)

- Antibodies to phospholipids, phospholipid bound proteins (e.g. beta-2-glycoprotein I)
- Interfere with coagulation assay, prolonging the tests but a misnomer because they cause thrombosis
- Criteria
 1. Two prolonged phospholipid-dependent screening tests
 1. aPTT, DRVVT, KCT, dPT (TTI)
 2. Mixing study shows circulating anticoagulant
 3. Confirmatory test is positive
 4. Demonstrated twice at least 6 weeks apart

Factor VIII Inhibitor

- Alloantibodies developing in hemophiliacs
 - 15 to 35% of patients
 - Active bleeding does not subside with factor VIII replacement
 - Bypassing agents, Novoseven
 - Immune tolerance induction

- Acquired Inhibitors (Non-hemophilia)
 - Bleeding Manifestations are usually severe
 - Soft tissue bleeding (e.g. intramuscular), GI or urinary bleeding more common than intraarticular bleeding
 - 8-22% mortality, usually within weeks after presentation
 - No concomitant disease can be found in 50%
 - Remainder have connective tissue disease, IBD, malignancy, dermatologic disorders
 - Treat with immunosuppressant and Novoseven
Von Willebrand Disease (Another lecture!)

- Types 1, 2A, B, N, M, 2 pseudo
- If moderate to severe can present with bleeding in childhood or young adulthood
- Male and females equally affected
- Platelet Type Bleeding
 - Bruising
 - Epistaxis, oral bleeding
 - Menorrhagia
 - GI bleeding
- Laboratory Tests:
 - Bleeding Time/PFA-100
 - vWF Antigen
 - vWF Ristocetin Cofactor
 - Factor VIII Activity
 - Ristocetin Induced Platelet Aggregation
 - Multimer Analysis
- Treatment
 - DDAVP
 - Humate-P

Causes of isolated aPTT increase in hospital

- >50% of cases due to LAC
- No cause found in >30%
- Factor Deficiencies and combined factor deficiencies
- Low Numbers of:
 - vWD
 - Factor inhibitors

Elevated PT and aPTT

- Intrinsic + Extrinsic Pathway
- Intrinsic + Common Pathway
- Extrinsic + Common Pathway
- Extrinsic + Intrinsic + Common Pathway
- Common Pathway Only
 - Factors X, V, II

Causes of PT and aPTT elevation together

- Supertherapeutic Warfarin
- Supertherapeutic Heparin
- Direct Thrombin Inhibitors
- Multiple Factor Deficiencies
- Liver Disease
- Disseminated Intravascular Coagulation (can be shortened due to activated II and X, elevated FVIII)
- Afibrinogenemia or Hypofibrinogenemia
- Congenital Dysfibrinogenemia
- Lupus Anticoagulant (e.g. against prothrombin(II))
- Specific Inhibitor (multiple factors)