Glioma Research Surges in the Department of Pathology and Cell Biology
By Lloyd Greene and Peter Canoll

There were nearly 14,000 deaths from brain tumors in the US last year and for Grade IV glioblastomas (GBM), there is currently no effective cure. Over the past few years, the Department of Pathology and Cell Biology has become a vigorous center for brain tumor research with studies that define basic cellular mechanisms of transformation and that attempt to discover new targets for therapy. We are actively engaged in preclinical testing and in the development of clinical trials.

Jim Goldman has pioneered studies on the heterogeneous population of cycling glial precursor cells that are present throughout an entire lifetime and that are likely to give rise to many low and high grade gliomas. His lab is asking if there is any correlation between changes in precursor types over age and the age-related risk of developing different types of gliomas. Building off of this work, Peter Canoll’s lab has used genetically engineered mouse models and targeted retrovirus delivery to test the tumorigenic potential of glial progenitors that reside in the adult subcortical white matter, and has shown that these cells give rise to “proneural” gliomas, which account for the majority of low grade gliomas and secondary GBM. The Canoll lab has further identified molecular alterations that occur at early stages of glial progenitor transformation and they are exploring their functional significance and potential as therapeutic targets.

Antonio Iavarone and colleagues have been targeting the most aggressive forms of GBM, namely those with the “mesenchymal” gene expression signature. They have recently identified the first example of a highly oncogenic gene fusion protein (FGFR-TACC) associated with a subset of GBM and have shown that targeting this protein with an oral FGFR inhibitor significantly prolongs survival of mice bearing tumors initiated by the fusion protein.

This edition of The Newsletter, the 9th in the series, has a lot to cover. The last Newsletter was dedicated to the 25th anniversary of the modern era and included almost all of the recent history of the Department, as well as much that occurred many years ago. For those who did not see it, it is on-line. There was no room for our usual features: Annals of Administration, New Grants, New Faculty, New Administrators, New Residents, New Graduate Students, Promotions, Anniversaries, and all of the good things that help to unify a department of almost 400 people. This issue returns to that format and we hope to make up for lost time. We also feature a short article that explains the increasing glioma research in the Department. We salute Carol Mason, President-elect of the Society for Neuroscience. There were two laggards for the Anniversary Newsletter—the Breast and Neuropath Services and because we are forgiving, we include them here. We are back to saluting our administrators, including the HR staff and also Ellie Johnson our Business Manager. We admire all of the many people who get important grants in this difficult financial time. We have many new clinical faculty members. Finally, as a treat, we include some of the more amusing photos from the 25th Anniversary celebration with captions. Who knew that this group could rock?

Carol Mason to Be President of The Society for Neuroscience

Our own Carol Mason is President-elect of the Society for Neuroscience. Carol reportedly was elected with a large majority. Since the Society for Neuroscience has 40,000 members, this means more people voted for her than for Newt Gingrich and Rick Perry combined in the New Hampshire Presidential Primary (CPR is from New Hampshire and knows these things). On this proud note, we interviewed Dr. Mason:

Columbia Pathology Reports (CPR): When do you take over?

CM: Well, I have a year as president-elect, which starts on Oct. 10, so I will be president in 2013. Moses Chao from NYU is the current President. I’m actually the third Columbia person, after Eric Kandel and Mickey Goldberg, to be president. The first woman though!

CPR: Do you have to lobby the government?

CM: No, it’s not that much,其实就不需要那样说, anyway. It helps to have a knowledgeable person in the House.

CPR: What are the most interesting research areas right now?

CM: The most interesting research area is personalized medicine.

CPR: And that’s what you’re offering?

CM: Yes, personalized medicine is becoming a reality.

CPR: How do you do personalized medicine?

CM: We use molecular profiling to identify individual patients with specific genetic alterations. We then design therapies that target these alterations.

CPR: And how does that work?

CM: We use a combination of genomics, proteomics, and metabolomics to identify the best therapeutic targets. We then test these targets in preclinical models and refine our therapies.

CPR: And how do you do that?

CM: We use a combination of in vitro and in vivo models to test our therapies. We also collaborate with drug companies to develop new drugs.

CPR: And how do you do that?

CM: We use a combination of drug discovery and drug development. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

CM: We use a combination of business and science. We also collaborate with government agencies to fund our research.

CPR: And how do you do that?

CM: We use a combination of innovation and entrepreneurship. We also collaborate with non-profit organizations to fund our research.

CPR: And how do you do that?

CM: We use a combination of philanthropy and public policy. We also collaborate with academic institutions to fund our research.

CPR: And how do you do that?

CM: We use a combination of government and private funding. We also collaborate with industry to fund our research.

CPR: And how do you do that?

Carol Mason (continued from page 1)

CM: Well, believe it or not, the SfN has a building in Washington and a staff of 90 and we already have a lobbying staff, led by Marty Saggese. Recently, the Association for Neuroscience Graduate Programs was folded into the SfN, making it even larger. I should say that we are proud that 30% of our members are from other countries. It is clear that neurological problems, particularly with autism at the beginning of life and with dementias later in life cause enormous anguish and drive up medical costs. The SfN has always been in the forefront of studying and finding solutions for these problems and I hope to continue that. I am also very concerned about traumatic brain injury.

CPR: The country is waking up, once more, to the importance of science. How do you intend to keep this going?

CM: We need science for the people. We are already doing that, but we need to do more. In March we will have Brain Awareness Week and among the things we do is to take human brains into schools and engage students. A model for this is Columbia University Neuroscience Outreach led by Kelly Remole. With the resources of SfN, we can expand this program and make it better known and more accessible.

CPR: But what role do you have in supporting research?

CM: As I mentioned, the SfN already has responsibility for neuroscience graduate programs. If we want neuroscientists to find a way out of the problems that beset all people, we cannot afford blunt force trauma to research support.

CPR: What resources can you deploy?

CM: I am very concerned with ways to maintain research and careers in this slower economy. As far as careers are concerned, I am worried about all stages—from graduate or medical school, to programs that allow young scientists to have families. I also feel that people late in their careers can make great creative contributions and are an underused resource. There should be some way to mobilize their talents to the benefit of the next generations of neuroscientists.

CM: (continued from page 1)

Glioma Research Surges in the Department (continued from page 1)

Anna Lasorella, an expert in neural stem cell differentiation, has closely collaborated with Antonio on such studies. Lloyd Greene, in collaboration with ex-post-doc Jim Angelastro (now at UC Davis) has focused on ATF5, a transcription factor that is present in neural precursor cells and in various brain tumors and that appears to be required by glioblastoma cells, but not by non-transformed cells, for their survival. They have developed and are testing cell-permeating peptides that interfere with ATF5 function and that have been effective in eradicating endogenously generated gliomas in a preclinical animal model.

Key to making the Pathology and Cell Biology brain tumor effort a first rate program is the highly collaborative and interactive environment at Columbia both within and outside of the Department. Helping to foster this atmosphere is the newly reconstituted Neuro-Oncology program within the Herbert Irving Columbia Cancer Center that is headed by Neurosurgery’s Jeff Bruce and that includes all of the above Departmental members. Among many examples of such collaborative activities is Peter Canoll’s work with Jeff Bruce to optimize convection-enhanced delivery of chemotherapeutics to the brain and the movement of this work to clinical trials. Another is the effort between Antonio Iavarone and Biomedical Informatics Professor Andrea Califano to use an integrated computational approach to identify both targets and drugs for treatment of GBM. Additionally, recently appointed chief of neuro-oncology, Andrew Lassman, has been advising Lloyd Greene and others in the Department about translating their potential therapeutics to human trials. We look forward to the continued progress of brain tumor research in the Department and the University and to the translation of our efforts into new treatments.

Glial progenitors give rise to proneural glioma. Adult transgenic mice were injected with retrovirus that induces cre-mediated deletion of PTEN and expression of PDGF. At 3 days post injection (3 dpi) there is a small collection of retrovirus infected progenitor cells (green) at the injection site in the subcortical white matter (upper panels). By 21 days post-injection (21 dpi) the retrovirus infected progenitor cells have given rise to a tumor (lower panels). Hoechst nuclear stain (blue), olig2 (red).

Courtesy Dr. Peter Canoll.
Our PathHR team is now fully staffed. For the past several months, Abby Dove and Paul Castellano have had the pleasure of working with many of you on a myriad of HR, payroll, academic affairs, and administrative issues and challenges. We are thrilled that Mary Quaratino and Manual Terrell have joined the PathHR Team.

Here is a little background on each team member...

Paul L. Castellano, SPHR – Paul is our newly appointed Manager of HR and Academic Affairs. Paul joined the PathHR team as Supervisor-HR/Administrative Coordinator in October 2011. Prior to his relocation from San Francisco to New York City, Paul served close to eight years as the Manager of Human Resources and Academic Personnel for the Helen Diller Family Comprehensive Cancer Center at the University of California, San Francisco, School of Medicine. His previous appointments include Assistant Executive Director-Council Services for the Girl Scouts of Tres Condados in Santa Barbara, California, IT Manager for Girl Scouts of Washington, D.C., Data Systems Manager for the U.S. Air Force Plant 42 in Palmdale, California, and EEO Representative for Rockwell International. Paul holds an Associate of Science degree from Solano Community College. Over 30 years in HR and administration, Paul earned his SPHR (Senior Professional in Human Resources) certification from the Society for Human Resource Management (SHRM) and the Human Resources Association of New York (HRNY) in 2011. A professional opera chorister (Tenor), Paul is an active member of the American Guild of Musical Artists (AGMA). He hails from Napa Valley, California, and has been married over 29 years to Dr. Bruce Smith, retired Dean, School of Liberal Arts, City College of San Francisco.

Abbygale Dove – Prior to joining the PathHR Team as HR/Administrative Coordinator in August 2011, Abby served in the role of HR Assistant for the U.S. Congressional Budget Office in Washington, D.C., as the Senior HR Assistant for the New York University ITS Department, and as HR Assistant for the Brooklyn Academy of Music. Abby holds a Bachelor of Arts degree in Sociology from New York University and is currently investigating Masters programs to enhance her education. While at NYU, Abby also earned a Certificate in Human Resource Management. Abby’s current passions include spending time with her young son Kingston. She enjoys reading, writing, fashion, and home decorating projects. Abby hails from Brooklyn, New York.

Mary C. Quaratino – Mary joined the PathHR Team on May 1, 2012, as HR/Administrative Coordinator. She was recruited from within CU (12 years of service) where she started as a Temp in Doctors Private Offices (DPO) at the uptown campus. She most recently served four years as Administrative Coordinator with the Mailman School of Public Health in the Department of Environment Sciences in the Columbia Center for Children’s Environmental Health (CCCEH), where the focus was on environmental factors that affect Mothers and their Newborns living in the South Bronx, Upper Manhattan. Mary was born, raised, and continues to live in Washington Heights. Mary graduated from the College of Mount Saint Vincent with a Bachelor of Arts degree in Administration with a concentration in Human Resource Management. Until the time is right to have his own children, Manual is considering adopting a dog and enjoying the experience of unconditional puppy love...though he admits that a few goldfish will do for now. Manual hails from the great State of New Jersey.

The PathHR Team is located in PH 15 West, Room 1564-G, and can be reached by email at PathHR@pathology.columbia.edu or by calling (212) 305-7164. We encourage and welcome you to visit with the PathHR Team and introduce yourselves...team members will enjoy learning more about you, hearing your stories, and solving your HR problems.
25 Years of Neuropathology at Columbia (1987-2012)

By Jim Goldman

I arrived at Columbia with Mike Shelanski in 1987 to find a group of experienced neuropathologists – Phil Duffy, David Cowen, Dick Defendini, and Rusty Hays – in a Division with a long history of work in diagnostic and experimental neuropathology. The Division was one of the first neuropathology divisions in the country, led by Abner Wolf beginning in 1930. He was joined by David Cowen in 1937. Together they published seminal papers on the neuropathology of congenital toxoplasmosis and other perinatal pathologies, experimental research on toxoplasmosis and viral encephalitis including polio, the effects of X-irradiation on the brain, and the pathology of brain tumors and neurodegenerative disorders. David Cowen, who directed the Division from 1967-1976, attended our teaching conferences beginning in 1987 and we all enjoyed tales stemming from his long experience. His dry wit and connection to our past were invaluable. Phil Duffy and Dick Defendini directed the program between 1976 and 1987. One of Phil’s interests was astrocytes, about which he wrote a book, so I have felt at home carrying on the tradition of astrocyte studies. Dick, besides having a broad knowledge of neuroanatomy, neurology and neuropathology, was a student of the history of these disciplines and our guide on many occasions to classic literature and historical perspectives. Rusty was, and still is, a renowned expert on nerve and muscle diseases, retiring a few years ago as our Director of the Nerve and Muscle Laboratory.

In 1988 the Department hired Jim Powers as Division Director. Under his guidance we changed our methods of performing frozen sections, expanded our immunostaining resources, and increased efficiency and cooperation with our clinical colleagues. Jim, as an experienced neuropathologist with high standards and an overabundance of not-so-dry wit, was fun to work with and solidified our excellent relationships with neurosurgery and neurology, which have continued. When Jim left for Rochester, I took over as Chief of Neuropathology.

We have been fortunate to have attracted a group of excellent neuropathology fellows, some of whom we have even persuaded to remain in our Division. Phyllis Faust (1996), among our first trainees, came with strong background in lysosomal function and glycobiology. Having been caught in the Jim Powers web of peroxisomal diseases, Phyllis spent years after her fellowship working at Rockefeller to establish the first mouse model of a peroxisomal disorder. She then returned to the fold. Steve Chin (1994) joined us with a strong background in cytoskeletal biology and an interest in neurodegenerative diseases. After a number of years with us, Steve moved on to the University of Utah Medical Center, where he became Director of Neuropathology. Kure-nai Tanji (2004) brought to her training in neuropathology a long experience in mitochondrial myopathies acquired with her husband, Eduardo Bonilla. She has become a leading muscle and nerve neuropathologist, first working closely with Rusty Hays and then becoming Director of the Nerve and Muscle Laboratory. Under her leadership the Laboratory has continued to grow and now represents one of the largest and most respected nerve and muscle pathology centers in the country. Peter Canoll (2002) joined the faculty with a strong background in glial cell biology. He has developed important and novel mouse models of glia-mas, now in widespread use, and has been instrumental in strengthening the Pathology arm of the Neuro-Oncology program at CUMC, including supervising the Brain Tumor Bank. Although we are accredited by the ACGME for training 1 fellow each year, in 2008 we applied for a waiver to allow us to train 2 neuropathology fellows in that year. They were Andy Teich and John Crary and because both were excellent, we didn’t want to lose either one. Both Andy and John then joined our faculty in 2010 and are currently working on cellular and molecular approaches to Alzheimer disease and other tauopathies.

We have also gone outside our small nest to bring in neuropathologists from far away institutions. Yuan Chang (1993) came to us from neuropathology training at Stanford, and although her diagnostic and teaching skills are first-rate, she decided to pursue in addition a laboratory program looking for viruses in Kaposi’s sarcoma. Together with her husband Pat Moore she discovered HHV-8, now recognized as the causative agent in Kaposi’s. Yuan and Pat moved on to Pittsburgh in 2002. Jean-Paul Vonsattel moved here from Massachusetts General Hospital in 2001 to establish a Brain Bank. Jean Paul has given tremendous time and energy to develop a modern and first-rate Brain Bank, which disperses thousands of samples each year to laboratories throughout the U.S. and overseas.

Andy Dwork and Ben Tyko participated in the clinical service for several years and remain members of the Department. Andy works at the Psychiatric Institute researching the neuropathology of psychiatric disorders, and teaches medical students with us, presenting a grisly lecture on head trauma. Ben is a long-standing and prominent member of the Cancer Center, investigating mechanisms of gene imprinting and gene methylation. Finally, let me say that we are delighted to have Nadejda Mincheva Tsankova, MD, PhD who has joined us from UT Southwestern as Assistant Professor of Neuropathology.

We have been most fortunate to have had an excellent support staff, including Joan Doctor, Joan Sullivan, Patricia Jeremie, Chris deSousa, Linda McCamery, Maddy Kagan, and a dedicated and technically impressive histology staff in our neuropathology laboratory (when it was a separate lab) and our nerve and muscle laboratory, including Ruby Alcaraz, Maria G. Corotan, Dinah Neri, Larmor Gapuz, Rey C. Octavino, Cui Zhen He, WenHong Li, Evelyn Hernandez-Rosa, and Linda Friedman.

Through these 25 years, we’ve seen a consolidation of laboratories, a large increase in the numbers of specimens and a large increase in the kinds of immuno- and other special stains and molecular tests that have become standards of care in dealing with neuropathology specimens. Much of this progress has been driven by the tremendous advances in our understanding of the complicated molecular events that regulate the growth of brain tumors and the development of neurodegenerative disorders. Columbia has been a terrific and fertile place in which to work and to grow our Division. We have taken advantage of the strong basic science and clinical neuroscience communities at Columbia for invaluable collaborations and also for the opportunity to offer our fellows an education in any of a wide variety of neuroscience areas.
The Med to Grad Program

Will Vanti
Will moved to NYC from Toronto in 2003 and took his first job as a lab technician/manager at Mount Sinai. In 2005 he joined Asa Abeliovich’s lab and has been in Columbia ever since. He will take over some of the duties of Carl Reyes. Will says, “I was happy to be offered a chance to try something different in this new administrative position, although I do miss holding a pipette from time to time. I am glad to have the opportunity to contribute to the research efforts of the department in this new role!”

Kris Smith, RN
Kris Smith has joined Pathology & Cell Biology’s Central Administrative team as our Practice Manager.

Kris reports to Joann Li and is responsible for providing leadership in our clinical operations. She will partner with our Division Managers to coordinate and monitor our clinical services and outreach efforts and our billing operations. Kris works closely with our Faculty leadership and ColumbiaDoctors in overseeing all practice-related activities.

Kris served as a Division Administrator in Surgery at Columbia, for four years. Prior to that, she worked at South Nassau Communities Hospital. Before taking her current job, Kris consulted for Allscripts on the CROWN implementation here at CUMC. Kris’ background is in nursing and in health care administration. Her office is in PH15W-1564 and she can be reached at 212-305-3935 or Kris.Smith@columbia.edu

Honors and Awards
Asa Abeliovich received the coveted 2012 NIH Director’s Transformative Research Projects award.

This is an NIH Program that focuses on very high risk and potentially transformative proposals. As Asa explains it:

We are pursuing improved cell and animal models of human brain disorders, as well as novel cell therapy strategies for brain diseases. Recently, we succeeded in the directed conversion of human patient skin fibroblasts to neurons, achieved by introducing a ‘cocktail’ of pro-neural factors. Such cell reprogramming approaches may allow for the facile generation of replacement cells for some brain disorders. We have also applied this technology to model Alzheimer disease pathology, with the intention of pursuing disease mechanisms and testing potential therapies.

Website Re-engineered
The Pathology and Cell Biology departmental website has been re-engineered. It now features drop down menus. If the sections relevant to your responsibilities need revision, please gather all new materials and then contact Ping Feng and Rich Kessin who will see to the implementation.
In its continuing efforts to recognize the administrators that make the Department function (no, you academics, it does not just happen), the Newsletter would like to recognize our Business Manager, Elnora Johnson. Ellie began her employment with Barnard College back in 1979 and has been at Columbia since 1981. She was recruited to our Business Office in 2002, later became our Budget and Finance Manager and was promoted to Business Manager in 2010. Ellie comes to us with extensive experience from the downtown campus. As former Department Administrator for both the Mathematics and Philosophy departments, Ellie is our go-to resource for accounts payable, purchasing, capital expenditures, budget submissions and financial closes. Since Ms. Johnson became the Business Manager, the Department has greatly improved our business operations.

Ellie has a reputation, on both CU campuses, as a leader, problem solver and facilitator. Her understanding of our complex medical center has enabled her to navigate our systems and overcome challenges despite ongoing changes, increased regulations and limited resources. At times this puts her in the position of “enforcer” since she's charged with ensuring pathology processes meet both internal and external standards. If she or her staff require additional documentation, it’s not to be difficult but because they are trying to protect both you and the department.

This past year, Columbia took on the tremendous task of implementing a new financial system. The new system is named ARC, for Accounting and Reporting at Columbia. Ellie was instrumental in our implementation of the new system and has agreed to take on the heroic role of ARC liaison for the Department. Our transition to this new system was eased by thorough training and preparedness, thanks to Ellie.

During these 15 years the Department’s clinical revenues increased by double digits every year. He oversaw the renovations of 60,000 sq. ft of Pathology space. He graciously dealt with numerous needy faculty, none of whom knew that he still maintains his Police Department gun permit. He managed the merger of the Anatomy and Pathology Departments and oversaw the alliance with the Motor Neuron Center. Carl closely supervised the Clinical Outreach Program as part of his successful effort to increase the Department’s services and revenues.

Carl became a police officer in 1969, which was considerably better than driving a bread truck in the middle of the night. He retired as a Lieutenant, Commanding Officer, Quartermaster Section in 1990. He become Associate Director of NYC EMS in the Health and Hospitals Corporation. For eight months, before coming to Columbia, he was a member of the Fire Department, completing an unusual tour.

While at the Police Department, Carl was the winner of a special mayoral scholarship under Mayor Koch to the Kennedy School of Government. There he earned a Master’s of Public Administration and how to row in an 8 man shell and a single person skull. He recalls this as a wonderful year and is grateful to Mayor Koch to this day.

Carl has been married to the incredibly energetic Marge Reyes for 48 years and has three children and three grandchildren to whom he is devoted. Marge has already scheduled trips to Montreal in January (what was she thinking?) and to Israel in March. Finally, Carl has been the squash partner of Rich Kessin, who will miss him terribly.

After long service to the NYPD, the NYFD and the Department of Pathology and Cell Biology, Carl Reyes has decided to call it a day and retire to the more exhausting duties of grandchildren and his wife Marge’s need to travel. Carl was the Departmental Administrator for 15 years.

Our next hurdle will be using the new system for our budget forecasts for fiscal year 2014! That process is already underway and will be in full swing right after the New Year. Once again, we can count on Ellie to keep us to task and to meet all deadlines imposed upon us all the while keeping the day-to-day business processing moving along.

Ellie also dotes on her family, especially her grandchildren Romona Carter, Zakiyah Carter, Sharaya Carter and Shakai Black Johnson.

Thank you Ellie!
New Faculty

Yvette C. Tanhehco, MD, PhD
Assistant Professor of Clinical Pathology & Cell Biology
(appointed July 2012)

Daniela Hoehn, MD
Assistant Professor of Clinical Pathology & Cell Biology
(appointed August 2012)

Xiaolin Liu-Jarin, MD, PhD
Assistant Professor of Clinical Pathology & Cell Biology
(appointed January 2012)

Jorge L. Sepulveda, MD, PhD
Assistant Professor of Pathology & Cell Biology

Antonia R. Sepulveda, MD, PhD
Professor of Pathology & Cell Biology

Nadejda Mincheva Tsankova, MD, PhD
has been a fellow for 2 years, but with us for 4. She was an AP/NP resident - 2 years AP residency, 2 years NP fellow. Her photo and story will appear in our next issue.

Richard O. Francis, MD, PhD
Assistant Professor of Clinical Pathology & Cell Biology
(appointed December 2011)

Our Current First Year Residents

Top row, l-r
Jaya Pradhan, DMD, Oral Pathology
Diana Sung, MD, Anatomical and Clinical Pathology
Najiyah Kazi, MD, Anatomical and Clinical Pathology
Amy Coffey, MD, Anatomical and Clinical Pathology

Bottom row, l-r
Jerry Wang, MD, PhD
Anatomical and Neuropathology
Jung Hoon Son, MD
Anatomical and Clinical Pathology
Armando Del Portillo, MD, PhD
Anatomical Pathology
The Pathobiology Grad students

The Department is pleased to welcome (belatedly) the 2012 class of Pathobiology graduate students. They include, from left to right: Jing Du, Peking University; Youngjoo Yang, Stony Brook University; Martin Jacko, Masaryk University (Prague) and Corentin Moevus from the Université de Montréal. They have begun rotations and are also taking Biochemistry and our novel Mechanisms of Disease course.

Faculty Promotions

Gilbert Di Paolo, PhD
Associate Professor of Pathology & Cell Biology (in the Taub Institute) with tenure

Vimla Aggarwal, MBBS
Assistant Professor of Clinical Pathology & Cell Biology (appointed July 2012)

Nadejda M. Tsankova, MD, PhD
Assistant Professor of Pathology & Cell Biology (appointed July 2012)

Stephen M. Lagana, MD
Assistant Professor of Clinical Pathology & Cell Biology (appointed July 2012)

Marcela A. Salomao, MD
Assistant Professor of Clinical Pathology & Cell Biology (appointed July 2012)

In Memorium

Stephen Francis Ryan, M.D. ("Steve"), of Haworth, New Jersey, died on July 22, 2012 from complications associated with Alzheimer’s disease. He was 77 years old.

The eldest of three children of William and Dolores Ryan, Steve was born in Durango, Colorado on June 6, 1935.

Steve is survived by his wife Nancy, his daughters Elaine and Elizabeth Ryan, Celia Baney, and Lynne Andujar, his sons-in-law James Baney and Stephen Andujar, his grandsons Stephen and Michael Baney, his siblings Thomas Ryan and Diane Savell, and his nieces Kelly Larson and Karen Barbera.

He was an inspiration to current resident Patricia Raciti.

Steve graduated from Regis College in 1957 and received his M.D. from the University of Colorado Medical School in 1961 where he was a Boettcher Scholar. He served his internship at the Columbia Division of Bellevue Hospital in NYC from 1961 to 1962, and his residency in Pathology at the University of Colorado Medical Center from 1962 to 1964. He was appointed Fellow in Pathology studying electron microscopy in 1965.

Steve’s distinguished career at St. Luke’s-Roosevelt Hospital Center in New York City spanned from 1966 to 2000 where he became Chief of Anatomic Pathology. He also taught at Columbia University College of Physicians and Surgeons in New York City from 1966 to 2000 and became Professor of Clinical Pathology. He specialized in pulmonary pathology with over 150 publications in the field.
On the Shoulders of Giants

Hanina Hibshoosh, MD

In my office, neatly piled and undisturbed, I recently found a collection of bound papers I inherited from the late Dr. Raffaele Lattes upon his retirement. These bound documents with their yellowing frayed paper, but undiminished value, chronicle the minutes of the "Arthur Purdy Stout Club" over more than three decades.

The first of such volumes is a witness to the creation of the "Arthur Purdy Stout Club" and it reads as follows:

“MINUTES OF FOUNDER’S MEETING”
The Arthur Purdy Stout Club

On July 14, 1947, a small group of scientists, having in common a deep and absorbing interest in pathology met in the Vanderbilt hotel, New York City, with but a single aim - to do honor to their teacher and friend, Dr. Arthur Purdy Stout.”

These men include: Asa Beach, Vincent P. Collins, John P. Heaney, Cushman D. Haagensen, Robert C. Horn, Raffaele Lattes, William L. Lehmann and Alvin O. Severance. (It was in the days, now mercifully over, before women had a large impact. In this context see the article by Heidi Rotterdam on Women in Pathology in the last newsletter. It is on our website).

The men, “hereinafter known as the founders, had two desires. First, a profound admiration and sincere devotion for Dr. Stout, their teacher, and second, to continue the keen intellectual interest and curiosity in the things he teaches. They felt that both aims could be simultaneously accomplished by organizing and naming for him a club composed of a select group of professional men with an honest interest and respect for pathology as taught by Dr. Stout. It was felt that the greatest amount of admiration could be shown him in this manner.”

Dr. Arthur P. Stout, a surgeon by training, became the father of soft tissue pathology and surgical pathology in the United States. His thoughts, contribution, methodologies and classification have withstood, in many instances, scrutiny even in the molecular era and became a template for us all.

We now gather to celebrate and reflect on yet another transformation that has occurred in the past 25 years in the department of pathology. As such we are reminded that great men and women dedicated to a single principle have long served the Department of Pathology. Their goal is to gain a better understanding of disease so we can diminish its consequences to future generations and so that we can live better, more fulfilling lives. We are a part of an unbroken chain dedicated to this goal. The past 25 years have been thrilling as the department under Dr. Shelanski’s guidance, emerged as a focus of discovery, innovation and excellence in diverse fields from cancer to neurobiology. The discovery of PTEN, HHV8 role in Kaposi’s sarcoma, BCI6 role in lymphoma and beyond, and the participation in the creation of the preeminent neurobiology center in the world with its two Nobel prize winners (Dr Kandel and Dr. Axel) are but a few of the transforming events. Equally important is the creation of a culture where the adherence to the ideal and dedication to excellence is primary.

On the Shoulders of Giants

Hanina Hibshoosh, MD

This effort is ongoing as a new generation of dedicated physicians, scientist and their associates takes the mantle forward to improve our patients lives...the giants are a wind in our sails! I can hear the voices of the future speaking of them now, some from yellowing pieces of paper, some from the cloud, saying thank you, thank you, thank you! For those who know not the past, rest assured the giants were here.

Scenes We Would Like to See

Courtesy McKim, Mead & White, later alterations by Lloyd Greene, PhD
A Message from Dr. Marboe

This crossword puzzle has been created by Dr. Hamele-Bena. Completing it will acquaint you with the outstanding history of our depart-ment, among other things. It is my feeling that all residents should be able to complete this puzzle. Please deliver your completed puzzles, in ink, to Ms. Casey Schadie by February 15. No collaboration, please.

Charles Marboe, MD
Residency Program Director
Across
1. Spherical Gram positive bacterium causing skin infections
2. Mouth infection or excellent singer with spotted underparts
3. Mouth infection or excellent singer with spotted underparts
4. Mouth infection or excellent singer with spotted underparts
5. Mouth infection or excellent singer with spotted underparts
6. Mouth infection or excellent singer with spotted underparts
7. Mouth infection or excellent singer with spotted underparts
8. Mouth infection or excellent singer with spotted underparts
9. Mouth infection or excellent singer with spotted underparts
10. Mouth infection or excellent singer with spotted underparts
11. Mouth infection or excellent singer with spotted underparts
12. Mouth infection or excellent singer with spotted underparts
13. Mouth infection or excellent singer with spotted underparts
14. Mouth infection or excellent singer with spotted underparts
15. Mouth infection or excellent singer with spotted underparts
16. Mouth infection or excellent singer with spotted underparts
17. Mouth infection or excellent singer with spotted underparts
18. Mouth infection or excellent singer with spotted underparts
19. Mouth infection or excellent singer with spotted underparts
20. Mouth infection or excellent singer with spotted underparts
21. Mouth infection or excellent singer with spotted underparts
22. Mouth infection or excellent singer with spotted underparts
23. Mouth infection or excellent singer with spotted underparts
24. Mouth infection or excellent singer with spotted underparts
25. Mouth infection or excellent singer with spotted underparts

Down
1. Subjective evidence of disease
2. Mouth infection or excellent singer with spotted underparts
3. Mouth infection or excellent singer with spotted underparts
4. Mouth infection or excellent singer with spotted underparts
5. Mouth infection or excellent singer with spotted underparts
6. Mouth infection or excellent singer with spotted underparts
7. Mouth infection or excellent singer with spotted underparts
8. Mouth infection or excellent singer with spotted underparts
9. Mouth infection or excellent singer with spotted underparts
10. Mouth infection or excellent singer with spotted underparts
11. Mouth infection or excellent singer with spotted underparts
12. Mouth infection or excellent singer with spotted underparts
13. Mouth infection or excellent singer with spotted underparts
14. Mouth infection or excellent singer with spotted underparts
15. Mouth infection or excellent singer with spotted underparts
16. Mouth infection or excellent singer with spotted underparts
17. Mouth infection or excellent singer with spotted underparts
18. Mouth infection or excellent singer with spotted underparts
19. Mouth infection or excellent singer with spotted underparts
20. Mouth infection or excellent singer with spotted underparts
21. Mouth infection or excellent singer with spotted underparts
22. Mouth infection or excellent singer with spotted underparts
23. Mouth infection or excellent singer with spotted underparts
24. Mouth infection or excellent singer with spotted underparts
25. Mouth infection or excellent singer with spotted underparts
26. Mouth infection or excellent singer with spotted underparts
27. Mouth infection or excellent singer with spotted underparts
28. Mouth infection or excellent singer with spotted underparts
29. Mouth infection or excellent singer with spotted underparts
30. Mouth infection or excellent singer with spotted underparts
31. Mouth infection or excellent singer with spotted underparts
32. Mouth infection or excellent singer with spotted underparts
33. Mouth infection or excellent singer with spotted underparts
34. Mouth infection or excellent singer with spotted underparts
35. Mouth infection or excellent singer with spotted underparts
36. Mouth infection or excellent singer with spotted underparts
37. Mouth infection or excellent singer with spotted underparts
38. Mouth infection or excellent singer with spotted underparts
39. Mouth infection or excellent singer with spotted underparts
40. Mouth infection or excellent singer with spotted underparts
41. Mouth infection or excellent singer with spotted underparts
42. Mouth infection or excellent singer with spotted underparts
43. Mouth infection or excellent singer with spotted underparts
44. Mouth infection or excellent singer with spotted underparts
45. Mouth infection or excellent singer with spotted underparts
46. Mouth infection or excellent singer with spotted underparts
47. Mouth infection or excellent singer with spotted underparts
48. Mouth infection or excellent singer with spotted underparts
49. Mouth infection or excellent singer with spotted underparts
50. Mouth infection or excellent singer with spotted underparts
51. Mouth infection or excellent singer with spotted underparts
52. Mouth infection or excellent singer with spotted underparts
53. Mouth infection or excellent singer with spotted underparts
54. Mouth infection or excellent singer with spotted underparts
55. Mouth infection or excellent singer with spotted underparts
56. Mouth infection or excellent singer with spotted underparts
57. Mouth infection or excellent singer with spotted underparts
58. Mouth infection or excellent singer with spotted underparts
59. Mouth infection or excellent singer with spotted underparts
60. Mouth infection or excellent singer with spotted underparts
61. Mouth infection or excellent singer with spotted underparts
62. Mouth infection or excellent singer with spotted underparts
63. Mouth infection or excellent singer with spotted underparts
64. Mouth infection or excellent singer with spotted underparts
65. Mouth infection or excellent singer with spotted underparts
66. Mouth infection or excellent singer with spotted underparts
67. Mouth infection or excellent singer with spotted underparts
68. Mouth infection or excellent singer with spotted underparts
69. Mouth infection or excellent singer with spotted underparts
70. Mouth infection or excellent singer with spotted underparts
71. Mouth infection or excellent singer with spotted underparts
72. Mouth infection or excellent singer with spotted underparts
73. Mouth infection or excellent singer with spotted underparts
74. Mouth infection or excellent singer with spotted underparts
75. Mouth infection or excellent singer with spotted underparts
76. Mouth infection or excellent singer with spotted underparts
77. Mouth infection or excellent singer with spotted underparts
78. Mouth infection or excellent singer with spotted underparts
79. Mouth infection or excellent singer with spotted underparts
80. Mouth infection or excellent singer with spotted underparts
81. Mouth infection or excellent singer with spotted underparts
82. Mouth infection or excellent singer with spotted underparts
83. Mouth infection or excellent singer with spotted underparts
84. Mouth infection or excellent singer with spotted underparts
85. Mouth infection or excellent singer with spotted underparts
86. Mouth infection or excellent singer with spotted underparts
87. Mouth infection or excellent singer with spotted underparts
88. Mouth infection or excellent singer with spotted underparts
89. Mouth infection or excellent singer with spotted underparts
90. Mouth infection or excellent singer with spotted underparts
91. Mouth infection or excellent singer with spotted underparts
92. Mouth infection or excellent singer with spotted underparts
93. Mouth infection or excellent singer with spotted underparts
94. Mouth infection or excellent singer with spotted underparts
95. Mouth infection or excellent singer with spotted underparts
96. Mouth infection or excellent singer with spotted underparts
97. Mouth infection or excellent singer with spotted underparts
98. Mouth infection or excellent singer with spotted underparts
99. Mouth infection or excellent singer with spotted underparts
100. Mouth infection or excellent singer with spotted underparts

Down
1. Spherical Gram positive bacterium causing skin infections
2. Mouth infection or excellent singer with spotted underparts
3. Mouth infection or excellent singer with spotted underparts
4. Mouth infection or excellent singer with spotted underparts
5. Mouth infection or excellent singer with spotted underparts
6. Mouth infection or excellent singer with spotted underparts
7. Mouth infection or excellent singer with spotted underparts
8. Mouth infection or excellent singer with spotted underparts
9. Mouth infection or excellent singer with spotted underparts
10. Mouth infection or excellent singer with spotted underparts
11. Mouth infection or excellent singer with spotted underparts
12. Mouth infection or excellent singer with spotted underparts
13. Mouth infection or excellent singer with spotted underparts
14. Mouth infection or excellent singer with spotted underparts
15. Mouth infection or excellent singer with spotted underparts
16. Mouth infection or excellent singer with spotted underparts
17. Mouth infection or excellent singer with spotted underparts
18. Mouth infection or excellent singer with spotted underparts
19. Mouth infection or excellent singer with spotted underparts
20. Mouth infection or excellent singer with spotted underparts
21. Mouth infection or excellent singer with spotted underparts
22. Mouth infection or excellent singer with spotted underparts
23. Mouth infection or excellent singer with spotted underparts
24. Mouth infection or excellent singer with spotted underparts
25. Mouth infection or excellent singer with spotted underparts
26. Mouth infection or excellent singer with spotted underparts
27. Mouth infection or excellent singer with spotted underparts
28. Mouth infection or excellent singer with spotted underparts
29. Mouth infection or excellent singer with spotted underparts
30. Mouth infection or excellent singer with spotted underparts
31. Mouth infection or excellent singer with spotted underparts
32. Mouth infection or excellent singer with spotted underparts
33. Mouth infection or excellent singer with spotted underparts
34. Mouth infection or excellent singer with spotted underparts
35. Mouth infection or excellent singer with spotted underparts
36. Mouth infection or excellent singer with spotted underparts
37. Mouth infection or excellent singer with spotted underparts
38. Mouth infection or excellent singer with spotted underparts
39. Mouth infection or excellent singer with spotted underparts
40. Mouth infection or excellent singer with spotted underparts
41. Mouth infection or excellent singer with spotted underparts
42. Mouth infection or excellent singer with spotted underparts
43. Mouth infection or excellent singer with spotted underparts
44. Mouth infection or excellent singer with spotted underparts
45. Mouth infection or excellent singer with spotted underparts
46. Mouth infection or excellent singer with spotted underparts
47. Mouth infection or excellent singer with spotted underparts
48. Mouth infection or excellent singer with spotted underparts
49. Mouth infection or excellent singer with spotted underparts
50. Mouth infection or excellent singer with spotted underparts
51. Mouth infection or excellent singer with spotted underparts
52. Mouth infection or excellent singer with spotted underparts
53. Mouth infection or excellent singer with spotted underparts
54. Mouth infection or excellent singer with spotted underparts
55. Mouth infection or excellent singer with spotted underparts
56. Mouth infection or excellent singer with spotted underparts
57. Mouth infection or excellent singer with spotted underparts
58. Mouth infection or excellent singer with spotted underparts
59. Mouth infection or excellent singer with spotted underparts
60. Mouth infection or excellent singer with spotted underparts
61. Mouth infection or excellent singer with spotted underparts
62. Mouth infection or excellent singer with spotted underparts
63. Mouth infection or excellent singer with spotted underparts
64. Mouth infection or excellent singer with spotted underparts
65. Mouth infection or excellent singer with spotted underparts
66. Mouth infection or excellent singer with spotted underparts
67. Mouth infection or excellent singer with spotted underparts
68. Mouth infection or excellent singer with spotted underparts
69. Mouth infection or excellent singer with spotted underparts
70. Mouth infection or excellent singer with spotted underparts
71. Mouth infection or excellent singer with spotted underparts
72. Mouth infection or excellent singer with spotted underparts
73. Mouth infection or excellent singer with spotted underparts
74. Mouth infection or excellent singer with spotted underparts
75. Mouth infection or excellent singer with spotted underparts
76. Mouth infection or excellent singer with spotted underparts
77. Mouth infection or excellent singer with spotted underparts
78. Mouth infection or excellent singer with spotted underparts
79. Mouth infection or excellent singer with spotted underparts
80. Mouth infection or excellent singer with spotted underparts
81. Mouth infection or excellent singer with spotted underparts
82. Mouth infection or excellent singer with spotted underparts
83. Mouth infection or excellent singer with spotted underparts
84. Mouth infection or excellent singer with spotted underparts
85. Mouth infection or excellent singer with spotted underparts
86. Mouth infection or excellent singer with spotted underparts
87. Mouth infection or excellent singer with spotted underparts
88. Mouth infection or excellent singer with spotted underparts
89. Mouth infection or excellent singer with spotted underparts
90. Mouth infection or excellent singer with spotted underparts
91. Mouth infection or excellent singer with spotted underparts
92. Mouth infection or excellent singer with spotted underparts
93. Mouth infection or excellent singer with spotted underparts
94. Mouth infection or excellent singer with spotted underparts
95. Mouth infection or excellent singer with spotted underparts
96. Mouth infection or excellent singer with spotted underparts
97. Mouth infection or excellent singer with spotted underparts
98. Mouth infection or excellent singer with spotted underparts
99. Mouth infection or excellent singer with spotted underparts
100. Mouth infection or excellent singer with spotted underparts
Photos From the 25th Anniversary Party
Charles Manley was the photographer for our 25th Anniversary Party. He has created a website called “2175 Pathology 25 Years” to share pictures with friends and family. He would like you to be a member of the site. Check it out at http://pathology25years.shutterfly.com/. Find hundreds of pictures, of which the ones shown below are not necessarily the only good ones. PASSWORD: pathologycumc

The Clinical Pathology guys, Eldad Hod, Richard Francis and Steven Spitalnik

Mahesh Mansukhani

Waddya mean I can’t dance? Joann and Eugene Li

Master of Ceremonies Lloyd Greene

Mike and Vivien

Karen Duff: In the moment.

Ron Liem and Julie Canman

Dr. Joseph Point du Jour, Dr. Kimberly Point du Jour and Kim’s mentor Gil Di Paulo
They had a lot to drink.

“I am the captain of Pathology and I command a right good crew!”
Chairman Mike Shelanski

“Yeah, well I was the captain of the USS Harry S. Truman and my crew was pretty good too. Do your guys make carrier landings?”
Rear Admiral Herman Shelanski
Our Faculty have continued to compete successfully for research support. In addition to the grants listed below, The Newsletter would like to note that this year we have successfully renewed the training grants for the MD/PhD program and for the CMBS graduate program. The first was under the direction of Dr. Michael Shelanski who would like to thank Patrice Spitalnik and Jeffrey Brandt for their hard work in assembling our application. The critical Cellular, Molecular and Biomedical Training Grant application was organized by Ron Liem who would like to thank Zaia Sivo and Fred Lowe. We also note the renewal of the Vision Training Grant by Carol Mason, who thanks Josie Salcedo for her help.

Abeliovich, Asa
1. Human Induced Neuronal Stem Cell Models of Familial Alzheimer’s Disease-NIA (see page 5)

2. Characterization of human-induced neuronal (hiN) cells from Alzheimer’s disease (AD) patients’ skin (Merck)

Awano, Tomoyuki/Monani lab
Investigating the existence and role of genetic modifiers of SMA modifiers in model mice (MDA)

Clark, Lorraine
Parkinson’s Disease Foundation (PDF) Research Center Grant 2012-2013 (PDF)

Clynes, Raphael
1. Columbia University Medical Center Skin Disease Research Center (CUMC- DRC), National Institute of Arthritis and Musculoskeletal and Skin Diseases

2. Enhancing the Vaccinal Effect of Anti-tumor Antibodies (NCI)

Crary, John
Role of microRNAs in tangle predominant Alzheimer’s disease
American Health Assistance Foundation

D’Agati, Vivette Denise
Aging & Vulnerability to Ischemia: Pathways & Rescue (with NYU), NIH

Di Paolo, Gilbert
1. Role of Phosphoinositides in Neuronal Membrane Traffic and Neurodegeneration, (RO1, NS, NIH)

2. Kimberly Robinson: The Study of Phosphatidic Acid and Phospholipase D in membrane trafficking, (F31, NIH)

Doetsch, Fiona
1. Angel Maldonado-Soto: Identification and Regulation of Quiescent Stem Cells in the Adult Brain (F31, NS,NIH)

2. Perivascular niche for adult neural stem cells (R21, NS, NIH)

Faust, Phyllis
1. Essential Tremor: Gene Expression Profiling in Cerebellar Purkinje Cells (R21, NS, NIH)

Gershon, Michael
Microenvironment in Enteric Neuron Development (RO1, NS, NIH) 30th year!

Goldman, James
Alexander Disease: Cellular and Molecular Mechanisms (NIH, with University of Wisconsin)

Greene, Lloyd
1. Neuron Death in Parkinson’s Disease: The Role of Trib3 (RO1, NS, NIH)

2. Parkinson’s Disease Foundation (PDF) Research Center Grant 2012-2013

3. Defeating insect-borne diseases using atomic resolution structure, Bumpus (William N and Bernice E) Foundation

4. Mechanisms of Dopamine Neuron Degeneration (P50, NS, NIH)

Gundersen, Gregg
Role of Nucleo-cytoskeleton Interactions in Cell Migration (RO1, NIGMS, NIH)

Henderson, Christopher
Contribution of neurotensin to degeneration of vulnerable motor neurons in ALS. Amyotrophic Lateral Sclerosis Association

Kim, Tae-Wan
Novel CNS Transporter Target in Alzheimer’s Disease
American Health Assistance Foundation

Laifer, Edward
Molecular Regulation of Adrenal Cortex Homeostasis and Remodeling, (ROI, NIDDK, NIH)

Mao, Yinghui
Formin mDia Functions in Mitosis (RO1, NIGMS)

Mason, Carol Ann
1. Growth and Guidance of Retinal Axons (RO1, National Eye Institute)

2. The Role of Zic Genes in Patterning the Binocular Projection (RO1, National Eye Institute)

3. Vision Sciences Training Grant (T32, NIH)

4. Genes that regulate retinal ganglion cell identity, Fight for Sight, Inc.

McCabe, Brian
Disruption of neuronal NF-kB signaling by TDP-43 and FUS/TLS mutations in familial ALS, Amyotrophic Lateral Sclerosis Association

Mentis, George
Mechanisms of Central Synaptic Dysfunction in SMA, (RO1, National Institute of Neurological Disorders and Stroke/NIH)

Monani, Umrao
1. Novel Genetic Determinants of the Neuromuscular SMA Phenotype (RO1, National Institute of Neurological Disorders and Stroke/NIH)

2. Mouse model of Aromatic L-amino acid decarboxylase deficiency, (AADC Research Trust, ALADD Foundation, and the Pediatric Neurotransmitter Disease Association)

3. Identifying spinal muscular atrophy modifiers (SMA, Europe)
New Grants

Pellizzoni, Livio
1. Role of Stasimon Dysfunction in Spinal Muscular Atrophy. (R21, National Institute of Neurological Disorders and Stroke/NIH)

2. Sarah Tisdsale: Molecular and cellular characterization of SMN-mediated U7 snRNP assembly, (F31, National Institute of Neurological Disorders and Stroke/NIH)

Przedborski, Serge
1. Localization of α-synuclein in mitochondrial-associated ER membranes. (Parkinson’s Disease Foundation)

2. Parkinson’s Disease Foundation (PDF) Research Center Grant 2012-2013

3. Mechanisms of Dopamine Neuron Degeneration (P50, National Institute of Neurological Disorders and Stroke/NIH)

4. Cell-based assays for the screening of neuroprotective small molecules for ALS, (Amyotrophic Lateral Sclerosis Association)

Spitalnik, Steven
1. Harmful effects of transfusion of older stored red cells: iron and inflammation, (RO1, National Heart, Lung, and Blood Institute/NIH)

Wichterle, Hynek
1. The Role of mir-17~92 Cluster in Motor Neuron Degeneration, (R21, National Institute of Neurological Disorders and Stroke/NIH)

2. Motor neuron selector genes and mechanism of their action, (RO1, National Institute of Neurological Disorders and Stroke)

For our national ranking in NIH funding, see the last page.

In October we celebrated the arrival of a new member of our Next-Gen sequencing family; a HiSeq 2000 machine, with the capacity of 800Gb output per run. That is equivalent to a full diploid human genome with a 100-fold coverage. What was a ten-year project a decade ago, can now be accomplished in two weeks. With this, the era of clinical full-exome and full-genome sequencing has officially started at Columbia.

This new instrument joined the Illumina GAIIx and the MiSeq machines already in clinical operation for mitochondrial genome sequencing. The new machine will be used for full-exome sequencing of patients with genetic conditions in the care of our colleagues in Pediatrics, Neurology, and several other departments. It will be the workhorse of our clinical operation, as well as a program project grant submitted jointly to the National Human Genome Research Institute by PGM at CUMC, the Cold Spring Harbor Laboratories and the New York Genome Center. The goal of this grant application is to establish the technical and ethical framework for the use of Next-Gen sequencing in the clinical arena. The results it will provide will shorten the diagnostic odyssey of our patients and provide a wealth of new information about the molecular causes of human disease and human genetic diversity.

Our Far Flung Photographers
Tired of Academia? Try this!

A photo taken by our creative director Richard Miller while on vacation in Jamaica. The rainbow and the jumper were real. The Caribbean was 120 feet below. The diver lived.
The Department offers a very broad range of expertise and diagnostic services. We are available for consultation at the following locations.

Web: www.pathology.columbia.edu
Email: pathology@columbia.edu
Laboratory services: 1-800-653-8200/1-212-305-4840
Administrative Services: 1-212-305-7164

Our Diagnostic Services

The Department offers a very broad range of expertise and diagnostic services. We are available for consultation at the following locations.

Web: www.pathology.columbia.edu
Email: pathology@columbia.edu
Laboratory services: 1-800-653-8200/1-212-305-4840
Administrative Services: 1-212-305-7164

A Note on Publications

The members of the department contributed approximately 260 peer reviewed publications in the years 2011-2012. The newsletter suggests that interested parties search the websites of the individual faculty members at http://pathology.columbia.edu/

A Guide for the Perplexed: Columbia’s New Academic Title System

It is well known that the three most complicated things in the world are: Medical Billing, Columbia’s system of academic titles, and The General Theory of Relativity. In that order. Now, fulfilling a mandate from Dean Goldman, Dr. Anne Taylor, has led a committee to reform the title structure. The title structure system has been simplified and changed to recognize all types of contribution to our Medical Center. The areas of focus include: Research, but also Education and Clinical and Public Health Practice. These changes will be introduced next summer. To learn about them visit: http://www.cumc.columbia.edu/faculty/. Log in and click on Restructure of the Academic Tracks. This should help. Dr. Taylor informs us that more information will be forthcoming.

Chairman
Dr. Michael L. Shelanski
Delafield Professor of Pathology
Pathology and Cell Biology

Editor
Dr. Richard H. Kessin
Professor
Pathology and Cell Biology

Design and production
Richard V. Miller
CUMC IT

http://pathology.columbia.edu/

Senior Associate Proofreader
Ms. Casey Schadie
Coordinator of Residency Programs
Department of Pathology and Cell Biology

The Columbia Pathology and Cell Biology Report is a publication of the Department of Pathology and Cell Biology at the Columbia University Medical Center. If you have comments or questions, contact:
Dr. Richard H. Kessin
at 212.305.5653
Email: rhk2@columbia.edu